

Co-teaching Entry Level Certificate and GCSE Combined Science: Synergy

Component 3 - Elements, mixtures and compounds

Component 4 – Chemistry in our world

This resource guides you through co-teaching our Entry level Certificate (ELC) Science and Foundation Tier GCSE Combined Science: Synergy specifications. Our ELC is ideal for students who may not achieve a grade 1. It's also a valuable motivational tool to build confidence for your Foundation Tier students.

Chemistry: Component 3 – Elements, mixtures and compounds

ELC Outcomes	Summary of content covered in ELC	Same theme covered in Combined but extra content	New content on same topic Rest of Combined Foundation content
	covered in ELC	Combined but extra content	Rest of Combined Foundation Content
1. Atoms and	All substances are made	4.5.1.1 Atomic number and	4.1.2.1
elements	of atoms.	the periodic table	Scientific models of the atom
	An atom is the smallest		4.9 Key ideas
	part of an element.		
			4.1.2.3
	The elements are shown in the periodic table and		Sub-atomic particles
	elements in the same		4.1.2.2
	group of the periodic table have similar		The size of atoms
	properties.		4.1.2.5
	properties.		Electrons in atoms
			4.5.1.3
			Group 0
			4.5.1.4
			Group 1
			4.5.1.5
			Group 7
2. Elements and	Atoms combine with	4.5.2.1	4.6.2.1
compounds	different atoms to form a compound.	Chemical equations	Types of chemical bonding
	Compounds can be		
	made by metals		

Practical development 3. States of matter	combining with non- metals or by non-metals combining with other non-metals. Simple reactions can be described as word equations. Investigate the reaction when magnesium burns in oxygen (air) to produce magnesium oxide. Compare the properties of iron and sulphur with those of iron sulphide. The three states of matter are solid, liquid and gas. Definitions of the changes between the three states using the terms melting, boiling,	4.1.1.1 A particle model	4.6.2.3 Properties of ionic compounds
	three states using the		
	Investigate the changes		
Practical development	in state from ice to steam.		

	structures that determine		
Practical development	their properties. Investigate the properties of graphite as a lubricant		
	and for writing.		
5. Mixtures	Mixtures contain two or more substances which are not chemically combined.		4.1.1.5 Meanings of purity
	The appropriate method to separate mixtures by filtration, distillation, crystallisation or chromatography	4.7.3.2 Making salts (includes filtration and crystallisation)	
Practical development	Use filtration / distillation / crystallisation to separate substances.		tion of a pure, dry sample of a soluble salt from an insoluble nsen burner and a water bath or electric heater to evaporate
	Compare the time needed to filter mixtures of water and calcium carbonate with different particle sizes.	cf Neutralisation.	
6. Chromatography	Describe how to separate mixtures by chromatography.	4.2.2.4 Chlorophyll and other plant pigments	
	Recognise that in paper chromatography, a solvent moves through the paper carrying		

	different compounds different distances.		
Practical development	Investigate the different colours in inks or food colours using paper chromatography		ate how paper chromatography can be used to separate and oured substances. Students should calculate R _f values.
7. Extraction of metals from their ores	Unreactive metals are found in the Earth as metals. Most metals are found as compounds that need chemical reactions to extract the metal. Metals less reactive than carbon can be extracted by heating the metal ore with carbon. An ore is a rock containing enough metal to make it economic to extract it and large amounts of rock have to be quarried or mined to get metal ores. The effects of extracting metals can be reduced	4.8.2.1 Metal extraction by reduction of oxides	4.5.1.2 Metals and non-metals 4.7.5.2 Electrolysis (including the required practical 21: Investigate what happens when aqueous solutions are electrolysed using inert electrodes.) 4.8.2.8 Life cycle assessment 4.8.2.9 Recycling
Practical development	by recycling. Model smelting by extracting copper from malachite or lead from galena using carbon		

8. Properties of	Metals have giant	4.6.2.7	
metals	structures of atoms with	Properties of metals	
	strong bonds between	l reperties et metalle	
	the atoms so most		
	metals have high melting		
	points.		
	Properties of metals		
	Relate uses of metals to		
	their properties. Including		
	copper and aluminium.		
Practical	Compare properties such		
development	as conductivity or density		
	of some metals.		
9. Alloys	Most metals in everyday	4.6.2.7	
	use are alloys.	Properties of metals	
	An alloy is produced by		
	mixing a small amount of		
	other elements with a		
	metal – such as steel.		
Practical	Investigate the melting		
development	points of tin, lead and		
	solder.		
	Investigate the hardness		
	of different alloys or		
	steels.		
10. Polymers	Polymers are made from	4.6.2.4	
	small molecules called	Covalent bonding	
	monomers joined		
	together in very long		
	chains.		

	The uses of polymers are related to their properties. Polymers are not biodegradable (not broken down by microbes) and there are problems with the disposal of polymers.	
Practical development	Compare the biodegradability of different polymers and other materials	

Chemistry: Component 4 – Chemistry in our world

ELC Outcomes	Summary of content covered in ELC	Same theme covered in Combined but extra content	New content on same topic Rest of Combined Foundation content
Acids and metal reactions	Acids react with some metals to produce hydrogen. Hydrochloric acid produces chlorides. Sulfuric acid produces sulphates. Write word equations for the reactions when given the names of the reactants. Describe and carry out the test for hydrogen	4.7.3.1 Reactions of acids	
Practical development	Investigate the reactions of magnesium, zinc and iron with hydrochloric and sulfuric acids. Investigate the amount of hydrogen produced when acids react with metals		
2. Neutralisation	An acid is neutralised by an alkali or base to produce a salt and water. An acid is neutralised by a carbonate to produce a	4.7.3.2 Making salts 4.7.3.1 Reactions of acids	4.7.3.4 The pH scale and neutralisation 4.7.5.4 Tests for gases

	a alt water and carban		
	salt, water and carbon		
	dioxide.		
	Write word equations for		
	the reactions when given		
	the names of the		
	reactants.		
	Describe and carry out		
	the limewater test for		
	carbon dioxide.		
Practical	Investigate the	Required practical 17: Prepara	tion of a pure, dry sample of a soluble salt from an insoluble
development	neutralisation of acids by	oxide or carbonate, using a Bu	nsen burner to heat diluted acid and a water bath or electric
	bases, alkalis and	heater to evaporate the solution	n.
	carbonates.		
	Produce solid salt		
	crystals by evaporation of		
	a salt solution.		
3. Energy and rate	Describe reactions that	4.7.3.3 Energy changes and	4.7.4.4 Activation energy
of reaction	transfer energy to the	reactions	
	surroundings so that		
	temperature increases.		
	Describe reactions that		
	take in energy from the		
	surroundings so the		
	temperature decreases.		
Practical	Investigate the	Required practical 18: Investiga	ate the variables that affect the temperature changes of a
development	temperature changes	series of reactions in solutions.	For example acid plus metals, acid plus carbonates,
	that take place in	neutralisations, displacements	of metals.
	combustion,		
	oxidation and		
	neutralisation reactions.		

	Investigate the temperature changes when ammonium chloride dissolves in water or citric acid reacts with sodium hydrogen carbonate	47.40.0	
4. Increasing the rate of a chemical reaction.	Describe the increase in the rate of a reaction caused by increasing: • temperature • concentration of reactants • surface area of reactants or by adding a catalyst. Measure and record: • time for a reactant to be used up. • volume of gas produced • time for a solution to change colour/clarity	4.7.4.6 Catalysts	 4.7.4.1 Factors that affect reaction rates 4.7.4.3 The effect of temperature, concentration and pressure on rates of reaction 4.7.4.8 Reversible reactions 4.7.4.9 Dynamic equilibrium
Practical development	Investigate how to make a chemical reaction go faster.		ate how changes in concentration affect the rates of g measuring the volume of a gas produced and a method turbidity.
5. Changes in Earth's atmosphere	Development of the Earth's current atmosphere.	4.4.1.1 Development of the Earth's atmosphere	

	Photosynthesis and changes in the early atmosphere.		
Practical development	Investigate the production of oxygen by aquatic plants in different conditions by counting bubbles		
6. The current atmosphere	Carbon dioxide from the early atmosphere has been locked up as carbonates and fossils in rocks. The present composition of the Earth's atmosphere	4.4.1.1 Development of the Earth's atmosphere	
Practical development	Compare the amount of carbon dioxide in fresh air and exhaled air		
7. Crude oil and fuels	Crude oil is a mixture of a large number of compounds. Fractional distillation to produce useful fuels, such as petrol and diesel.	4.8.1.2 Hydrocarbons in crude oil 4.8.1.3 Fractional distillation of crude oil	4.8.1.4 Cracking hydrocarbons
Practical development	Compare prepared samples of fractions from crude oil/ demonstration		

	of fractional distillation of prepared crude oil sample.		
8. Burning fuels	The products of total combustion of a fuel are carbon dioxide, water vapour and oxides of nitrogen. Some fuels produce sulphur dioxide when burned. Partial combustion due to a limited air supply results in the production of carbon monoxide and, often, soot particles. Potential harm to the environment by burning fossil fuels: oxides of sulphur and nitrogen (Nox) cause acid rain and may harm human health. carbon monoxide can cause death. solid particles can cause global dimming and harm human health.	4.4.1.6 Pollutants that affect air quality	

Practical development	Investigate the products of combustion. Compare 'roaring' and 'safety' Bunsen burner flames. Investigate the production of acid rain (spray a large cotton wool 'cloud' with water; hold above burning matches; squeeze the 'cloud' over a UI solution).		
9. Human influences on the atmosphere	Carbon dioxide is produced by burning fossil fuels. Methane is produced from landfills and farming. The effects of increased carbon dioxide and methane on the temperature of the atmosphere.	4.4.1.4 Human impacts on the climate	4.4.1.3 The greenhouse effect 4.4.1.5 Climate change: impacts and mitigation
10. Water for drinking	Safe drinking water has few dissolved substances and low levels of microbes.	4.4.1.8 Sources of potable water	4.8.2.8 Life cycle assessment

	Safe drinking water is produced by filtration and sterilisation.	
Practical development	Distil a salt water solution to produce fresh water.	Required practical 11: analysis and purification of water samples from different sources, including pH, dissolved solids and distillation.
	Investigate the amount of dissolved solids in water from different locations by evaporating samples and weighing residues.	(cf ELC Biology Component 2 Outcome 7)