

Co-teaching Entry Level Certificate and GCSE Combined Science: Synergy

Physics

Component 5 – Energy, forces and the structure of matter Component 6 – Electricity, magnetism and waves

This resource guides you through co-teaching our Entry Level Certificate (ELC) Science and Foundation Tier GCSE Combined Science: Synergy specifications. Our ELC is ideal for students who may not achieve a grade 1. It's also a valuable motivational tool for building confidence for your Foundation Tier students.

Physics: Component 5 – Energy, forces and the structure of matter

ELC Outcomes	Summary of content covered in ELC	Same as Combined theme, but with extra content	New content on same topic Rest of Combined Foundation content
 Changes in energy storage 	When a kettle boils the way energy is stored in a simple system changes. Not all the changes are useful. Different devices have different energy wastages.	4.1.1.4 Heating and changes of state	 4.7.1.9 Kinetic energy 4.7.2.7 Power 4.7.2.8 Power and domestic electric appliances
Practical development	Circus (real or virtual) of everyday devices in use eg kettle, hairdryer, vacuum cleaner	Required practical 2: an investigation to determine the specific heat capacity of one or more materials. The investigation will involve linking the decrease of one energy store (or work done) to the increase in temperature and subsequent increase in thermal energy stored.	
2. Energy transfers and efficiency	Energy cannot be created or destroyed. In any energy transfer, some energy is stored in less useful ways and is described as 'wasted' energy. Unwanted energy transfers can be reduced.	4.8.2.5 Energy conservation and dissipation4.8.2.6 Preventing unwanted energy transfers	 4.8.2.7 Energy efficiency 4.1.1.2 Density Required practical 1: use appropriate apparatus to make and record the measurements needed to determine the densities of regular and irregular solid object and liquids.

	The rate of cooling of a building is affected by the thickness and thermal conductivity of its walls. The higher the thermal conductivity of a material, the higher the rate of energy transfer by conduction across the material.	
Practical development	Leslie's cube to demonstrate difference in surface cooling. Compare cooling of drinks with lid on/off. Investigate factors that affect the rate of cooling of a container of water – this could include surface area, initial temperature, types of insulation, colour of the container. Investigate the thermal conductivity of different materials – consider: which is better for a	Required practical 6: investigate how the amount of infrared radiation absorbed or radiated by a surface depends on the nature of that surface. <i>cf Component 6 Outcome 9</i>

	saucepan handle: wood or metal?		
3. Energy resources	Define 'fuel' and 'fossil fuel'.	4.8.2.4 Energy resources	
	Energy resources are renewable or non- renewable.		
Practical development	Demonstrate electricity generation by building models of windmill (using hairdryer) or water mill to turn a turbine and generate a voltage. Investigate the relationship between the		
	distance from a light source and solar (photoelectric) cells on the voltage generated.		
4. Types of forces	Forces are either a push or pull acting on an object due to an interaction with another force.	4.6.1.1 Forces as vectors	4.6.1.4 Mass and weight
	Forces are either: contact forces or non- contact forces		

Practical development	Use newton meters to experience a range of pushes/pulls for lab/everyday objects Attraction/repulsion of magnets; attraction of magnetic materials eg paperclips/iron filings		
5. Effects of forces	Work is done when a force causes an object to move through a distance. (No calculations needed) When work is done against frictional forces acting on an object, there is a rise in temperature.	4.6.1.3 Work	4.6.1.6 Elastic deformation
Practical development	Investigate how different surface affect the amount of friction on a moving block.	Required practical 13: Investig spring.	ate the relationship between force and extension for a
6. Speed	Speed is measured by the distance travelled in a certain time. The units for speed as metres per second, kilometres per hour and miles per hour.	4.7.1.1 Speed and velocity	4.7.1.2 Distance, speed and time 4.7.1.4 Free fall

	Calculate average speed using the equation: <i>speed = distance / time</i> Investigate how the speed of a trolley (or model car) changes as it		
7. Stopping distances	rolls down a slope. The stopping distance of a vehicle is the sum of the distance the vehicle travels during the driver's reaction time (thinking distance) and the distance it travels under the braking force (braking distance). For a given braking force, the greater the speed of the vehicle, the greater the stopping distance.	4.7.1.10 Stopping distances	 4.7.1.5 Newton's First Law 4.7.1.6 Newton's Second Law Required practical 14: Investigate the effect of varying force on the acceleration of an object of constant mass and the effect of varying the mass of an object on the acceleration produced by a constant force. 4.7.1.7 Newton's Third Law
8. Reaction times and stopping distances	A typical reaction time for a person ranges from 0.5s to 0.9s. A driver's reaction time can be affected by tiredness, drugs, alcohol and distractions.	4.2.1.6 The human nervous system	

Practical development	Investigate factors that		
	affect human reaction		
	time – consider:		
	tiredness, distraction,		
	practice.		
9. Weather conditions	The braking distance of	4.7.1.10 Stopping distances	
and braking distances	a vehicle can be		
	affected by adverse		
	road and weather		
	conditions and poor		
	condition of the vehicle.		
10. Radioactivity	Some atomic nuclei are	4.3.2.2 Radioactive decay	4.1.2.4 Isotopes
	unstable and produce		
	ionising radiation.	4.3.2.5 Contamination and	
		irradiation	
	Nuclear radiation may		
	be emitted as:		
	alpha particles		
	 beta particles 		
	• gamma rays		
	These have different		
	penetration of materials		
	and range in air.		
	The uses and densers		
	The uses and dangers.		
	associated with the		
	three types of radiation.		

Physics: Component 6 – Electricity, magnetism and waves

ELC Outcomes	Summary of content covered in ELC	Same theme covered in Combined but extra content	New content on same topic Rest of Combined Foundation content
1. Current in a circuit	Current is a flow of electrical charge which can be measured using an ammeter in series. Voltage is measured using a voltmeter in parallel across a component. The current in a component depends on the resistance in the circuit.	4.7.2.1 Electric current 4.7.2.2 Current, resistance and potential difference	 4.7.2.4 Circuit elements 4.9 Key ideas: Models Cause and effect Action at a distance Proportionality Use of mathematical form 4.7.2.3 Series and parallel circuits
Practical development	Build series circuits to measure current through a variety of components. Investigate which materials are the best electrical conductors.	factors affecting the resistance at constant temperature and co Required practical 15: use circ	uit diagrams to set up and check circuits to investigate of electrical circuits. This should include the length of a wire ombinations of resistors in series and parallel. uit diagrams to construct appropriate circuits to investigate ety of circuit elements, including a filament lamp, a diode perature.
2. d.c. and a.c. current	Direct current is supplied by cells and batteries. Mains electricity is alternating current.	4.7.2.5 Direct and alternating currents	

	-	-		
	UK mains electricity has a frequency of 50Hz and is 230V.			
Practical	Compare the pattern			
development	shown on an			
development	oscilloscope for a d.c.			
	and a.c. supply.			
3. Wiring a plug	The colour coding for	4.7.2.6 Mains cables		
	three-core flex and the			
	appropriate terminal for			
	each wire in a plug.			
	The earth wire protects			
	the user; the fuse			
	protects the appliance.			
	Double-insulated			
	appliances do not need			
	an earth wire.			
Practical	Wire a standard 3 pin			
development	plug correctly.			
	Investigate how fuse wire			
	melts when the identified			
	current is exceeded		1	
4. Energy transfer in	Domestic electricity	4.7.2.8 Power and domestic	4.7.2.9 The National Grid	
electrical	meters measure the	electric appliances		
appliances	amount of energy used.			
	The unit for power (W).			
	Heating devices have the			
	highest power ratings.			
	The unit used in a			
	domestic electricity meter			

	to measure energy is the		
	kilowatt-hour (kWh).		
Practical	Reading of meters to		
development	produce meaningful and		
	valid observations.		
	Comparison of the		
	energy usage of small		
	household electrical		
	appliances using a joule		
5 Manuala	meter.		
5. Magnets	The poles of a magnet	4.6.3.1 Magnets	
	are where the magnetic		
	forces are strongest.	4.6.3.2 Magnetic fields	
	Like poles repel and		
	unlike poles attract; these		
	are non-contact forces.		
	There is a pattern of		
	magnetic fields between		
	two magnets.		
Practical	Identify the N and S		
development	poles of bar magnets		
development	using a suspended		
	magnet to show		
	attraction and repulsion.		
	Use a compass to		
	identify the field pattern		
	around a single and then		
	paired bar magnets.		

	Construct a 'magnetic toy' of floating magnets using circular 'holed' magnets and wooden base and rod.	
6. Electromagnets and solenoids	Current in a wire produces a magnetic field around the wire. Increasing the current increases the strength of a magnetic field. A simple electromagnet can be made from a solenoid and an iron core. Electromagnets are used in relays and scrapyards.	4.6.3.4 The magnetic effect of an electric current
Practical development	Use a plotting compass to identify the magnetic field round a current- carrying wire. Investigate how the strength of an electromagnet changes. Investigate factors that affect the strength of an electromagnet.	

7. Longitudinal and	Waves transfer energy	4.1.4.1 Transverse and	
transverse waves	not physical materials.	longitudinal waves	
	Waves may be		
	transverse or		
	longitudinal.		
	Sound waves need a		
	medium (material) to		
	travel through.		
Practical	Class 'Mexican wave'		
development	demonstration.		
	Practical demonstrations:		
	Slinky (longitudinal)		
	Rope (transverse)		
	Bell in (evacuated) jar		
8. Wave properties	A transverse wave can	4.1.4.2 A wave equation	
	be described by its		
	wavelength and		
	amplitude.		
	The wave equation; the		
	correct units for wave		
	speed, frequency and		
	wavelength		
Practical	Demonstrate wave	Required practical 5: make obs	servations to identify the suitability of apparatus to measure
development	shapes using		speed of waves in a ripple tank and waves in a solid and
	oscilloscope.	take appropriate measurement	
	Use oscilloscope,		
	frequency generator,		
	loudspeaker to relate		
	frequency to changes in		

	pitch and to relate amplitude to changes in volume.		
9. The	The order of the	4.1.4.3 Electromagnetic	
electromagnetic	spectrum (but not the	waves	
spectrum	values of wavelength or		
op o ou out	frequency).		
	in equelley /i		
	The risks associated with		
	ultraviolet waves, X-rays		
	and gamma rays.		
Practical	Investigate the	Required practical 6: investigat	te how the amount of infrared radiation absorbed or radiated
development	effectiveness of	by a surface depends on the na	
development	sunscreens in absorbing	cf Component 5 Outcome 2	
	u.v radiation using u-v		
	sensitive beads or		
	microscope slides and		
	•		
10 Lloop of the	SUNSCREENS		
10. Uses of the	The seven components	4.1.4.3 Electromagnetic	
electromagnetic	of the e-m spectrum.	waves	
spectrum	The success of		
	The uses of		
	electromagnetic		
	radiation.		
Practical	Circus of exemplars of e-		
development	m radiation eg radio;		
	microwave oven; infra-		
	red heater eg toaster;		
	light source and prism;		
	UV light and tonic water;		
	UV-visible pens; sample		
	X-ray.		

Investigate microwaves to find which materials block them (eg apple).	
Investigate light travelling down an optical fibre over a distance.	
Investigate the shielding of a mobile phone or remote control device.	
Investigate the range in which a Bluetooth device is effective.	